
2005: Origin of Randall plaques 2006: UF Clinical Trials Role of BNP and Uric acid Lowering therapies to prevent

ARF following cardiovascular surgery. 2007: Could uric acid have a role in acute k injury? 2008: Orthostatic

hypotension: a final common pathway? 2009: RRT or Not, that is the issue A. Ahsan Ejaz, M.D. Division of Nephrology, Hypertension and Transplantation tumor lysis sy University of Florida, Gainesville, Florida, U.S.A. Logist's role in

traumatic brain injury. 2012: Uric acid: a novel predictor

Disclosures: Supported in part by research grants from Sanofi-Aventis, Paris; Scios Inc, Freemont, CA; James and Esther King Foundation, Florida. 2014: Wave, twist and bench the role of 1064 diseases. 2015: Immune response and glor diseases.

•The crystal-dependent role of uric acid-related diseases

•The crystal-independent role of uric acid-related diseases

Acute kidney injury

Experimental studiesClinical studies

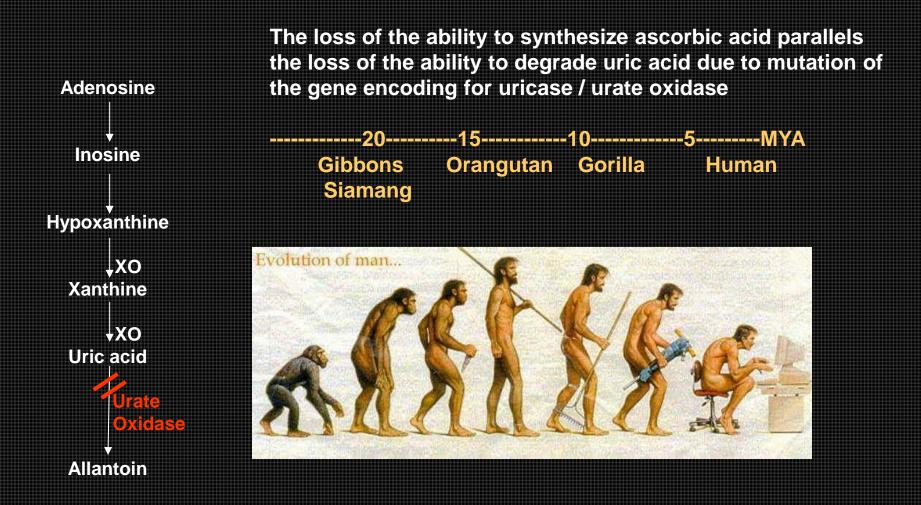
AKI= acute kidney injury; SUA = serum uric acid

The emergence of the relevancy of uric acid

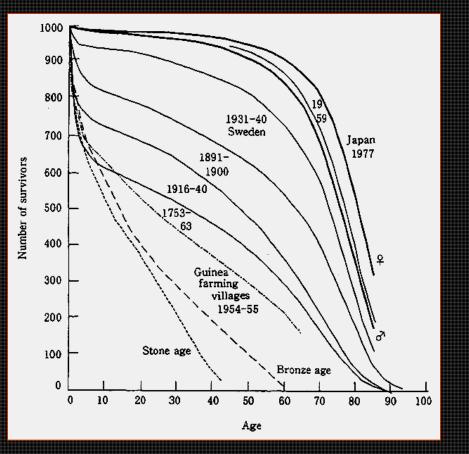
Scarcity of Vitamin C

Natural selection favored human individuals who could repair arteries with a layer of lipid

Survival benefit?


Subsequent million years:

Mutation of L-gulonolactone Oxidase: Loss of ability to synthesize Vit C in humans



4th ice age, 20 million years ago

Humans can not synthesize Vitamin C, nor degrade uric acid

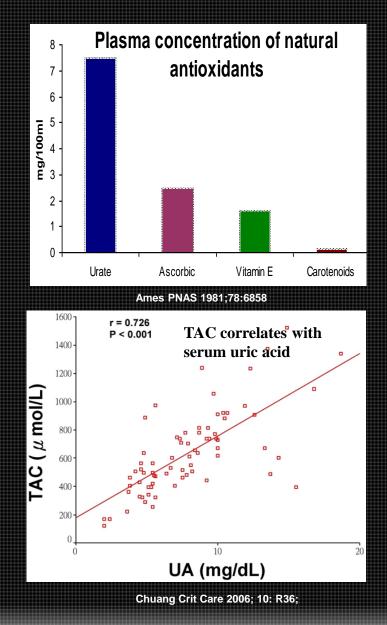
Uric acid is a protective mechanism against oxidative stress

Survival Curve for Number of Survivors Per 1,000 Births

Plasma uric acid levels have increased during primate evolution

Lengthening of life-span improved protective mechanisms against oxygen radicals

In 1981, Ames proposed that one of these protective systems is plasma uric acid


Soluble uric acid may act as an antioxidant that can react with a variety of oxidants including superoxide anion and peroxynitrite

Uric acid is a powerful antioxidant and scavenger of

reactive oxygen radicals

Uric acid is the major antioxidant in humans

Plasma uric acid concentrations are higher than Vit C

Total antioxidant capacity correlates with increase in plasma uric acid

A changing role for uric acid in disease states

Crystal dependent mechanism

Gouty arthritis

Urate nephropathy Nephron 1975; 14:88 Mol Med 2000;6:837

Known for centuries that the biological significance of uric acid was that it crystallizes in joints to cause gouty arthritis, and in the urinary tract to cause kidney stones

Nephrolithiasis

Howard, Childhood Leukemia

Acute crystallization of uric acid within the kidney during TLS was considered the cause of nephropathy

Uric acid crystals can induce inflammatory response via activation of inflammatory cells

via complement activation

Arthritis Rheum 1975;18:765 Curr Opinion Rheumatol 1993;5:510

Stimulate neutrophil chemotaxis phagocytosis, respiratory burst

Arthritis Rheum 1982; 25:181; 1969:12:189

Produce IL-1 and IL-1Ra

J Immunol 1994; 152:5485 •Releases leukotrienes, kinins, IL-8, PAF

Arthritis Rheum 1975;18:765 Curr Opinion Rheumatol 1993;5:510 Prostaglandins 1984; 27:563

Induce production of TNF-α, MCP-1, MIP-2, IL-6

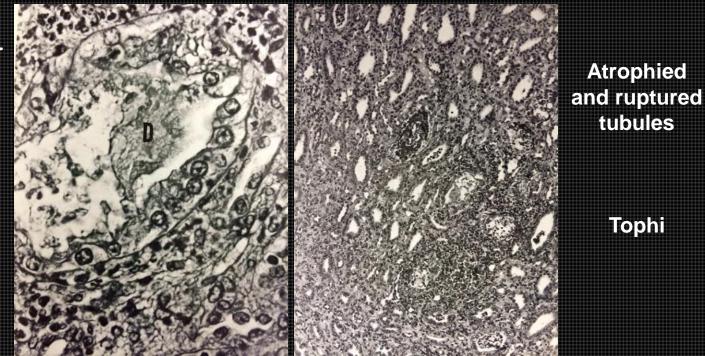
J Clin Invest 1991; 87:1375 Arthritis Rheum 2003; 48:2931; 1898; 32:1443

Mo release IL-1B that induce an inflammatory response via IL-1β receptor and MyD88 signaling pathway

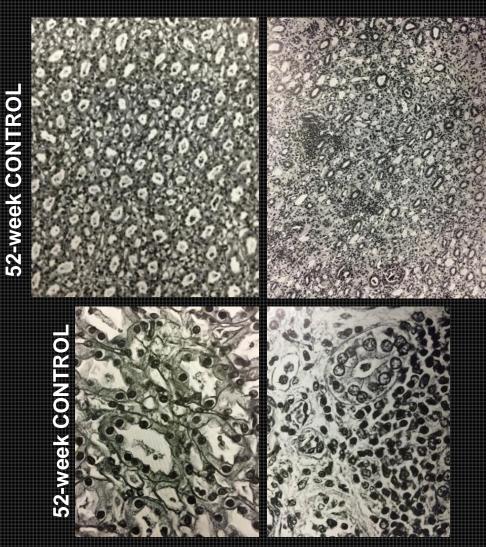
Activates T, B and dendritic cells

Nature 2003; 425:516 Am J Med Sci 2009; 337:23 Blood 111:1472

Linking uric acid crystals to the evolution of Chronic Kidney Disease


- In 1975, Bluestone et al demonstrated the link between chronic hyperuricemia and chronic kidney disease.
- Bluestone et al induced and sustained moderately severe hyperuricemia and hyperuricosuria in rats for up to 52 weeks.
- Performed periodic renal biopsies (4, 36 and 52 weeks) to investigate the evolution of urate nephropathy.

At 4 weeks – the acute phase


Massive intratubular urate deposition

Dilated tubules

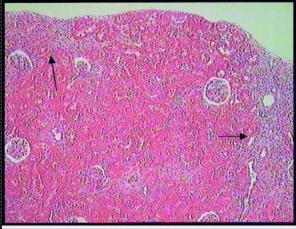
Peritubular acute inflammatory response

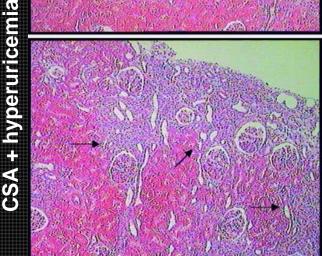
At 52 weeks – the chronic phase

Mononuclear cell infiltrates

Fibrosis

Chronic hyperuricemia leads to progression to chronic kidney disease via a Crystal-Dependent mechanism




SSA

Johnson et al demonstrated that mild hyperuricemia, in concentrations that do not cause crystal precipitation, can cause chronic tubulo-interstitial damage.

Absence of intrarenal urate crystal deposition

Mild hyperuricemia was associated with severe arteriolar hyalinosis and tubulointerstitial damage

Mild hyperuricemia can cause chronic kidney disease via Crystal-independent mechanisms

Clinical conditions associated with uric acid

Crystal dependent

Soluble uric acid / crystal independent

Gouty arthritis

Urate nephropathy

Hypertension

Israeli Heart Study (Khan, 1972) Kaiser Permanente (Selby, 1990) Univ of Utah (Hunt, 1991)

Olivetti Heart Study (Jossa, 1994)

CARDIA study (Dyer, 1999)

Osaka Health Survey (Taniguchi, 2001)

Osaka Factory Study (Masuo, 2003)

Osaka Health Survey (Nakanishi,2003)

Okinawa (Nagahama, 2004)

Bogalusa Heart (Alper, 2005)

Framingham (Sündstrom, 2005)

Normative Aging (Perlstein, 2006) MRFIT (Krishnan, 2006)

Cardiovascular Disease

Tohoku J Exp Med. 2007;211:369 Am J Hypertens 2007; 20:83 Am J Kidney Dis 2006; 48:761 J Clin Hypertens 2006; 8:510 Stroke 2006; 37:1503 Hypertension 2006; 47:195 Atherosclerosis 2005;183:147

Stroke

EJCPR. 2006;13:193 Atherosclerosis 2006;187:401 J Intern Med. 2005 ;258:435 Stroke 2006;37:1503

Diabetes

Diabetes. 2009 Diabetes Care 2010 Kidney Blood Pressure 2012 AJKD 2006 NDT 2009 CJASN 2010

Chronic kidney disease

Kidney Int. 67:237-47, 2005 Kidney Int 63:994, 2003 Kidney Int 64: s9-s14, 2003 AJN 2003; 23:2

Metabolic Syndrome

Circulation 2007; April epub Am J Med 2007;120:442 AJP Cell Physiol 2007; April epub Ann Epidemiol 2007; 17::245 Am J Hypertens 2006; 19:1055 Nat Clin Pract Nephrol 2005; 1:80

Acute Kidney Injury

Clin J Am Soc Nephrol 2007; 2:16 Am J Physiol 2007; 292:F116 Am J Nephrol. 2009;30:425 Am J Med. 2012;125:302.e9 Am J Nephrol 2015; PLoSOne 2015

Risks of major comorbidities associated with hyperuricemia in the US population

	OR (95% C.I.)
Hypertension	2.60 (2.15-3.14)
Obesity	3.12 (2.43-4.01)
Diabetes	1.63 (1.13-2.34)
Stroke	1.74 (1.16-2.59)
Myocardial Infarction	1.45 (1.12-1.88)
Heart Failure	2.52 (1.58-4.04)
Chronic Kidney Disease	2.33 (1.94- 2.80)

NHANES, N=5707

Relationship of allopurinol with improved endothelial function

ClinicalTrials.g NCT01158911: Uric Acid and Literm Outcomes in Chronic Kidne

> NCT00978653: The Effect of Un Acid Decrement on Endothelial Function in Patients With Chron

> NCT00978653: The Effect of U Acid Decrement on Endothelial Function in Patients With Chron

> NCT01228903: Uric Acid and th

NCT01350388: Effects of Febux on Adipokines and Kidney Disea Diabetic Chronic Kidney Diseas NCT00860366: Efficacy Study of

Combined Treatment With Uric , and rtPA in Acute Ischemic Stro NCT01368185: Impact of MK-09 on Uric Acid in the Management Hypertension (MK-0954A-366)

NCT02344602: The Effect of Un Acid Lowering in Type 1 Diabete

NCT00793585: A Controlled Str Uric Acid on the Progression of

NCT00987415: Using Allopuring Relieve Symptoms in Patients W Heart Failure and High Uric Acid

NCT01082640: Effect of Febuxo

on Renal Function in Patients W Gout and Moderate to Severe R

NCT00477789: Effects of Allopu on Diastolic Function in Chronic

Disease

Renal Failure

Renal Failure

Nephropathy

Levels

Impairment

Failure Patients

Endothelium is CKD

4.

5.

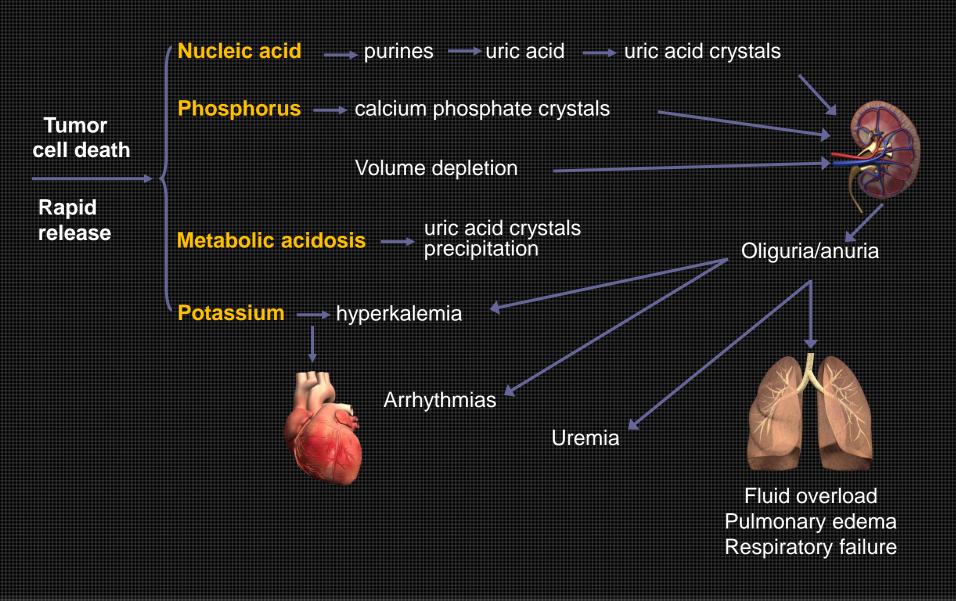
6.

8.

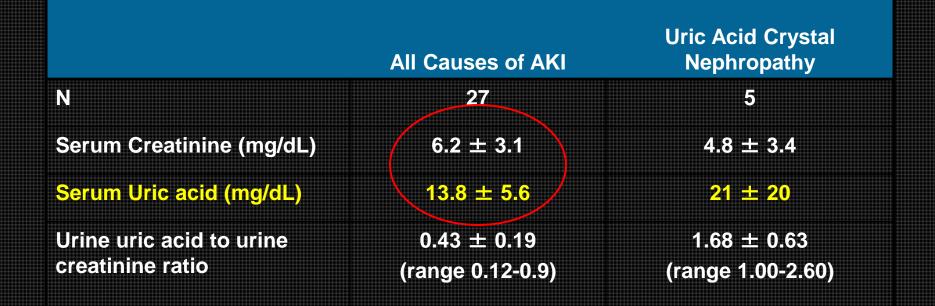
9.

10.

11.

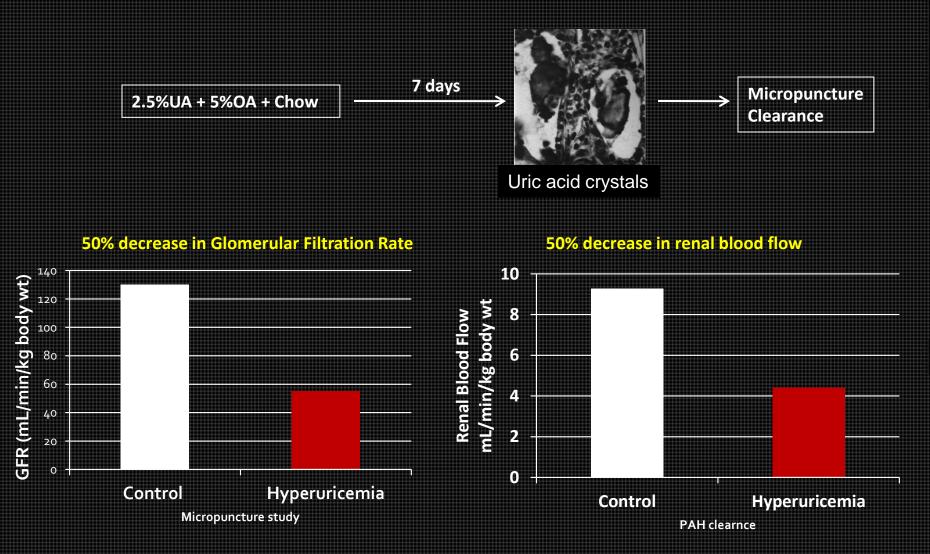

12.

	Study population	Relative improvement	Citation
JOV _ong- ney	Congestive heart failure	58%	Doehner, 2002
Iric Inic	Congestive heart failure 2002	50%	Farquharson,
Iric I nic	Congestive heart failure	30%	George, 2006
nic he	Normotensive type 2 diabetes	50%	Dogan , 2010
ixostat ease in	Obstructive sleep apnea	30%	El Solh, 2006
se of	Metabolic Syndrome	50%	Yiginer, 2008
Acid oke 0954A nt of	Type 2 diabetes	30%	Butler, 2000
	Asymptomatic hyperuricemia	20%	Kanbay, 2011
Iric tes tudy of f IgA	Asymptomatic hyperuricemia 2004	30%	Mercuro,
nol to With id kostat With	Asymptomatic hyperuricemia Ramirez, 2012	40%	Melendez-
Renal	Chronic kidney disease	100%	Yelken, 2012
ourinol c Heart	Chronic kidney disease	25%	Kao, 2011



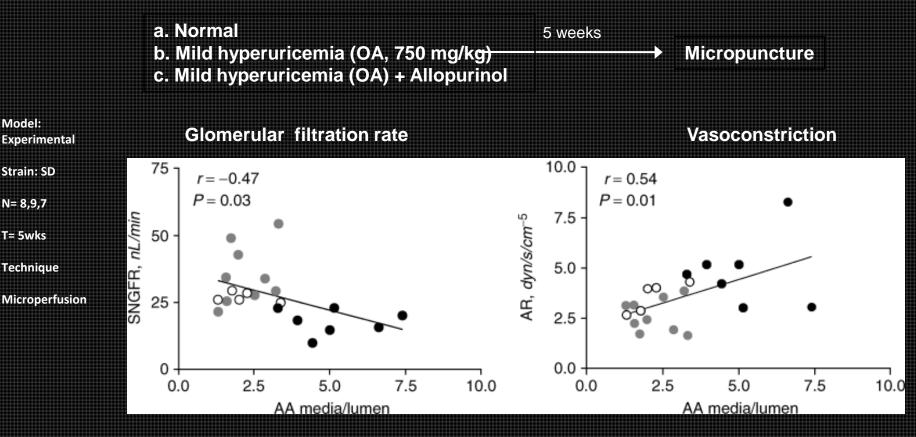
Serum uric acid is associated with many chronic diseases via both crystal-dependent and crystal-independent mechanisms

Crystal-dependent AKI associated with Tumor Lysis Syndrome



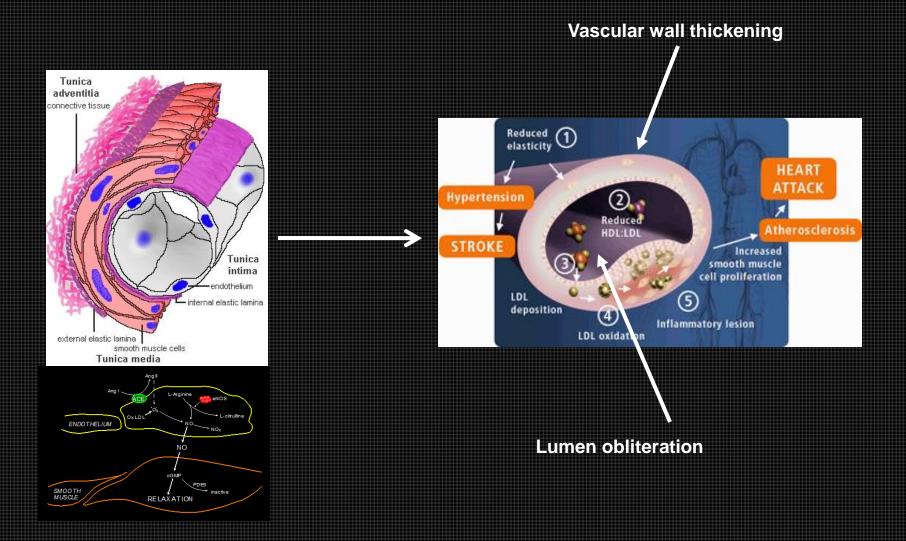
Estimating the role of uric acid in AKI

Intraluminal precipitation of uric acid crystals associated with alterations

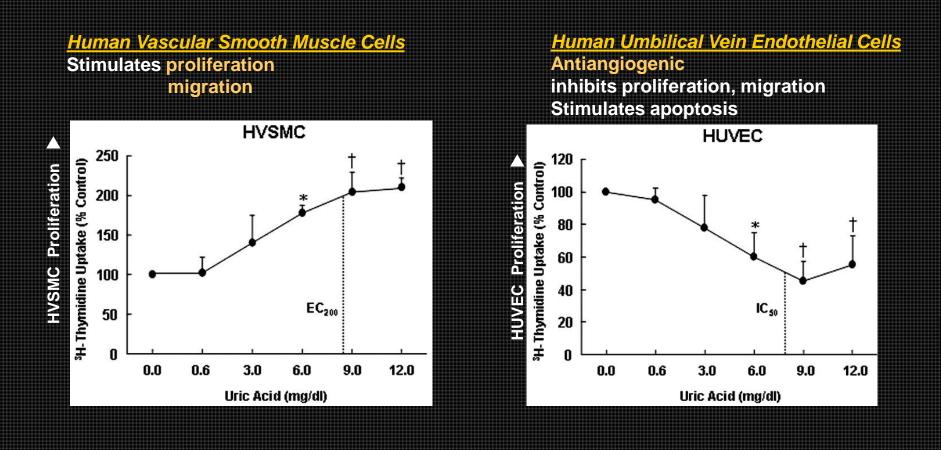

in renal function in experimental urate nephropathy

Soluble uric acid causes renal vasoconstriction via crystal-

independent mechanisms

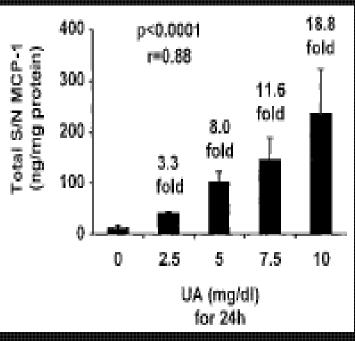


~50% decrease in SNGFR

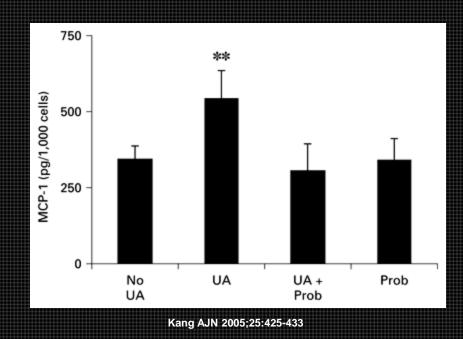

40-60% decrease in renal blood flow

i.e. uric acid in concentrations that do not cause intratubular crystal precipitation was also shown to decrease GFR and renal blood flow, suggesting a crystal independent pathway

The adverse events associated with uric acid are mediated by endothelial dysfunction and pathologic vascular remodeling


<u>Uric acid has proliferative effect on vascular smooth muscle cells.</u> <u>inhibitory effect on vascular endothelial cells</u>

Uric acid stimulates proinflammatory chemokine (MCP-1) production in vascular smooth muscle cells

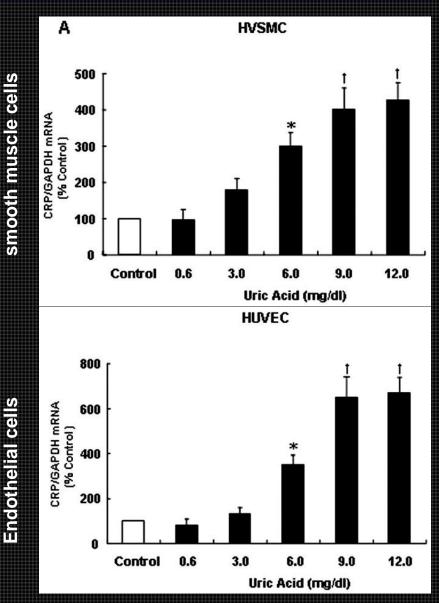

Proinflammatory / Prooxidative

MCP-1 is an inflammatory response

Kanellis/Johnson Hyprtension 2003; 41:1287

Probenecid blocks MCP-1 synthesis

Uric acid stimulates CRP production in HVSMC and HUVEC


Proinflammatory / Prooxidative

CRP expression in both VSMC and VEC

CRP is an inflammatory protein associated with the secretion of various cytokines, including IL-6, TNF- α , and IL-1

CRP is associated with atherothrombosis

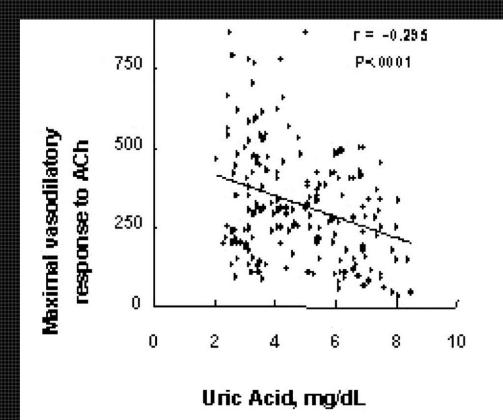
CRP is responsible for uric acid mediated vascular remodeling

Uric acid decreases bioavailabily of nitric oxide

HUVEC Uric acid inhibits NO production

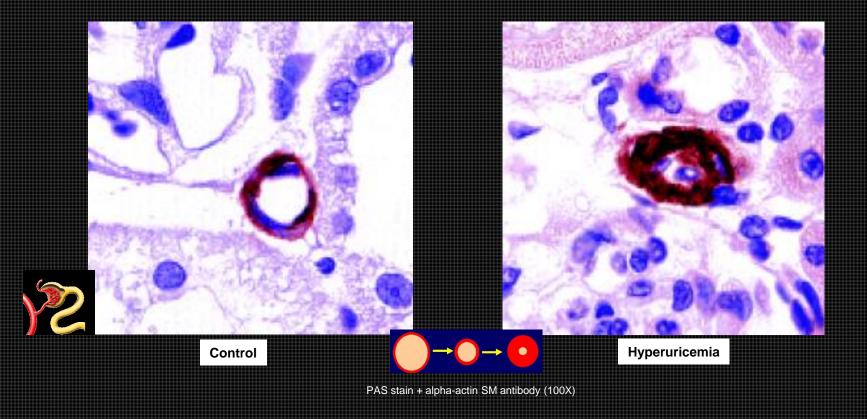
NO inhibiting effect of uric acid blocked by probenecid anti-CRP antibody

Inverse relationship between plasma uric acid and nitric oxide


•N=217. M108, F109; 48<u>+</u>10.6yrs Hypertensive patients Untreated

 endothelial function evaluated by vasodilatory response to intra-arterial infusion of ACh

 Forearm blood flow and arterial pressure measured


•Result

Uric acid reduces brachial artery flow mediated vasodilation

Zoccali JASN 2006;17:1466

Hyperuricemia induces thickening of vascular wall

Summary of the renal effects of uric acid

Preglomerular arterioles

Vasoconstriction

decreases renal blood flow ~40-60%

- ↑ RAS activation
- ↓ NO bioavailability
- ↑ Oxidants
- 1 inflammatory mediators
- ↑ vascular responsiveness

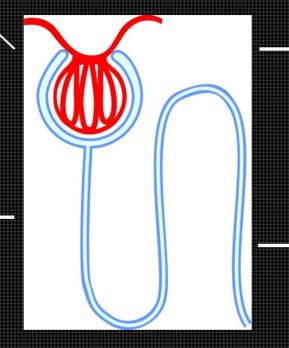
Khosla/Johnson Kl 2005; 67:1739, Kang JASN 2005;16:3553, Nakagawa Am J Physiol 2006; 290:F625

Proximal Tubules Oxidative stress

Inflammation

1 MCP-1, ICAM-1 KHK dependent Cirillo AJP 2009

Innate and adaptive immunity


↑ complement, TLR activation Burne-Taney AJP 2003 Rabb AJP 2000

Inhibition of PTC proliferation ↑ MAPK, NFKB Soutin AIP 2007

Mitochondrial dysfunction

Impaired autoregulation

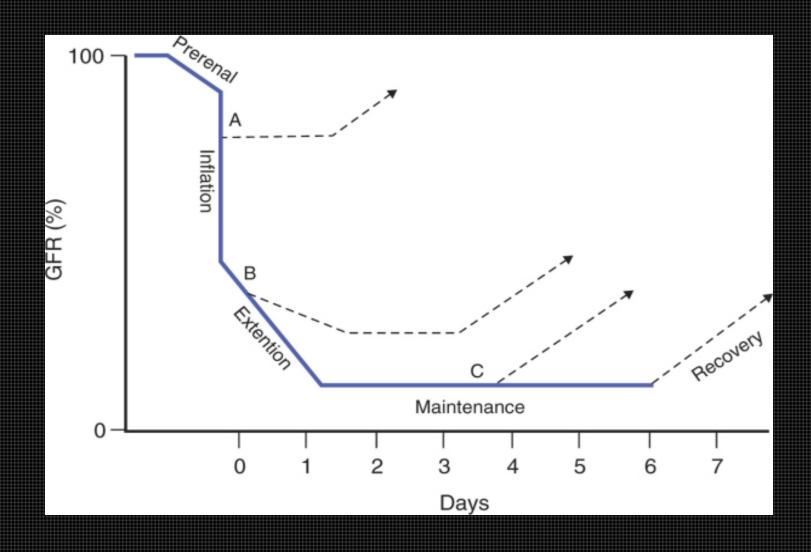
- ↑ VSMC proliferation & migration
- ↓ VEC proliferation & migration
- preglomerular arteriolar thickening

Glomerulus Glomerular filtration rate ~40-50%

Sanchez-Lozada AJP 2002 Sanchez-Lozada KI 2005

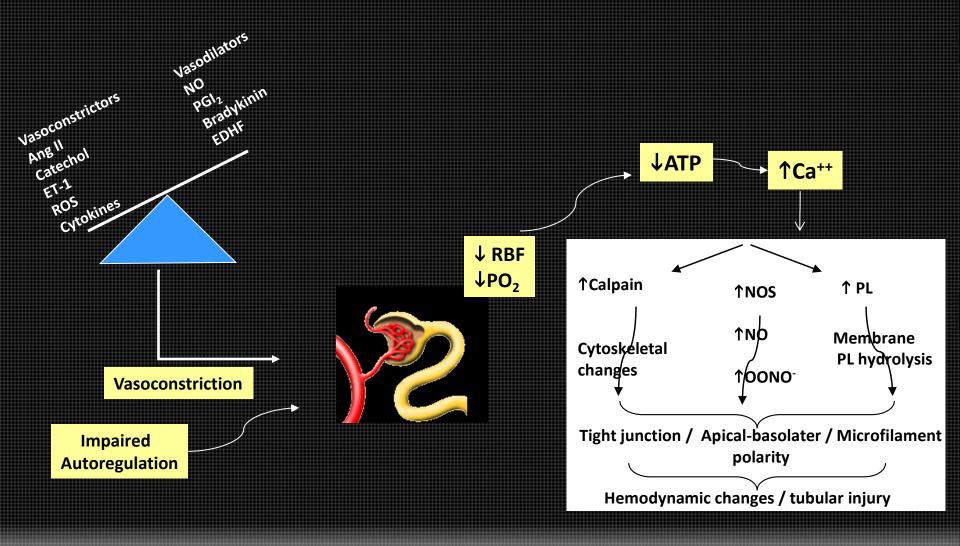
Distal Tubules Intratubular crystal deposition

tubular obstruction Kjellstrand Arch Intern Med 1974 Riesalbach Am J Med 1964

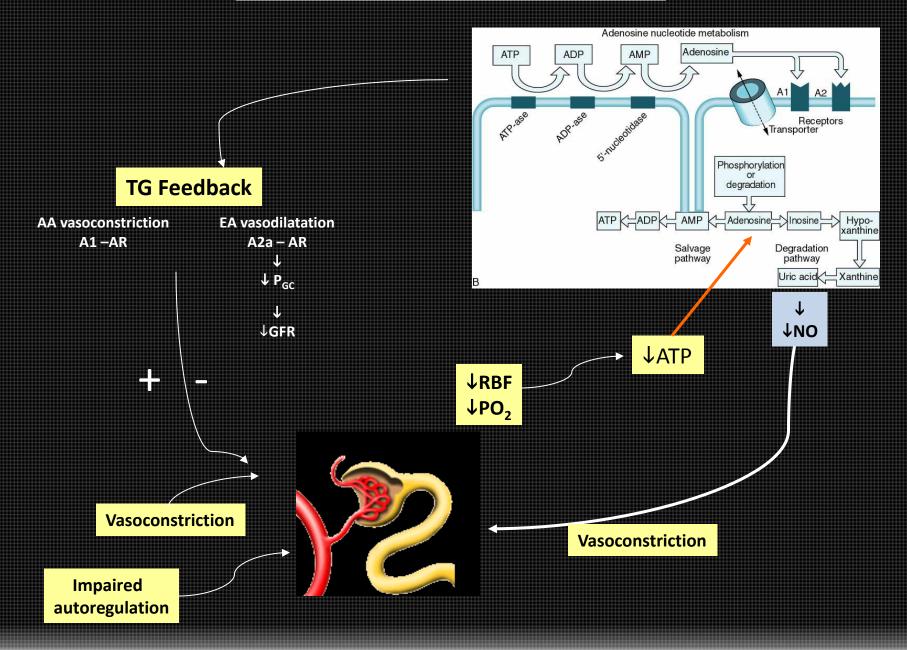

L

Crystal-induced inflammation

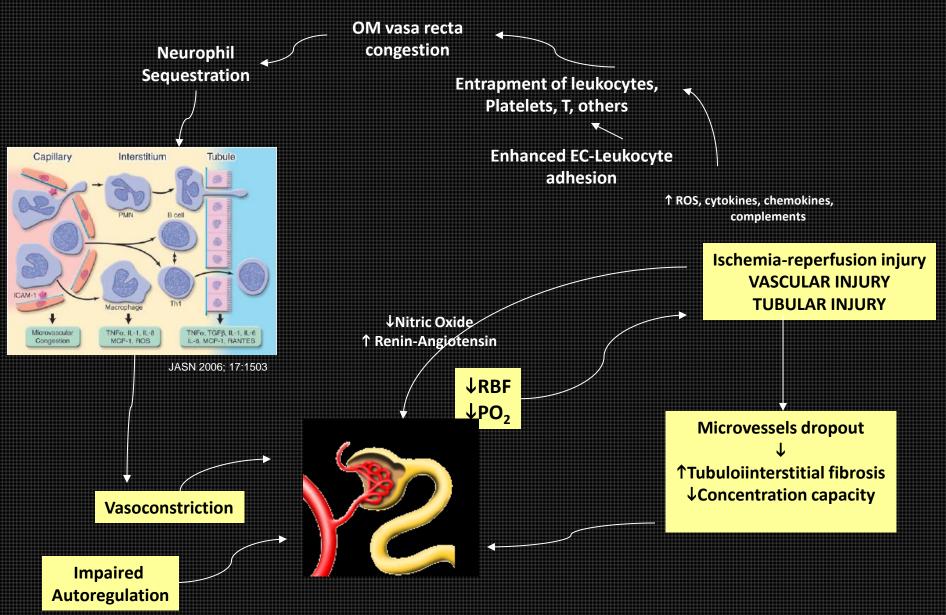
RAS: renin angiotensin sysytem; VSMC: vascular smooth muscle cells; VEC: vascular endothelial cells; KHK: keto-hexokinase; PTC: proximal tubular cells;


Ejaz/Johnson CJASN 2007;2:16 Shimada/Ejaz NDT 2009; 24:2960 Ejaz/Johnson AJN 2009; 30:425 Shimada/Ejaz Seminar Nephrol 2011; 31:543

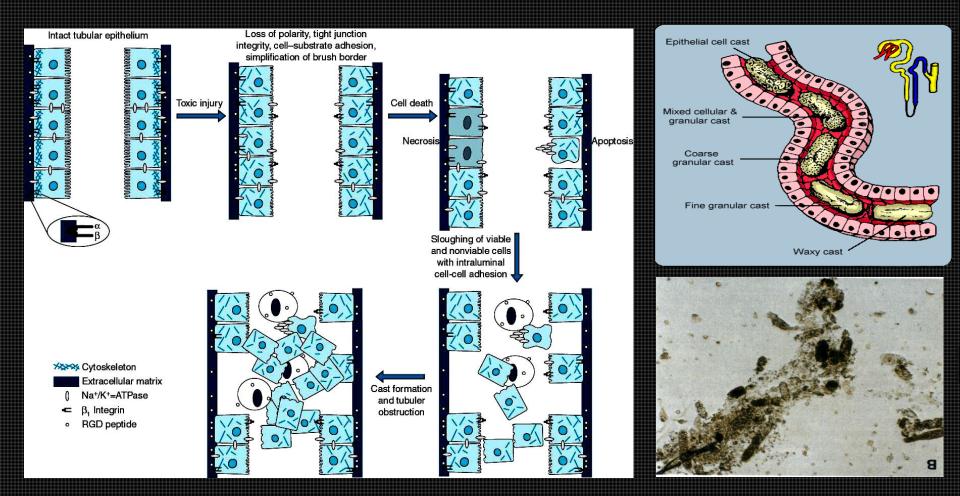
Renal vasoconstriction: potential initiator of ischemic AKI


Hypothesis of the mechanism of ischemic AKI

Reduction in outer medullary oxygen tension



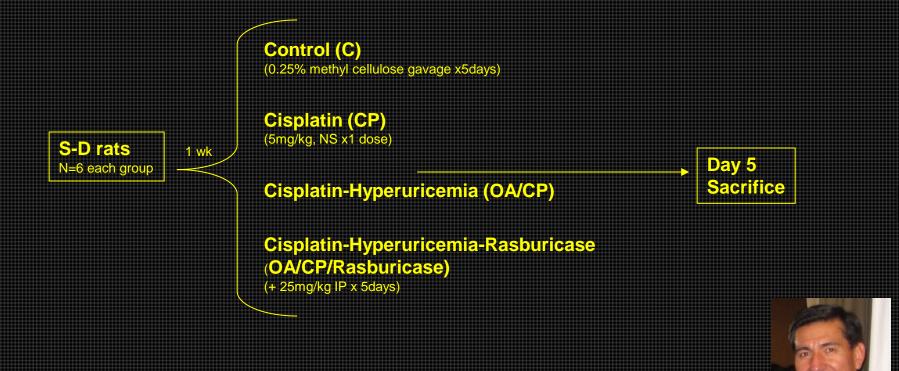
TG Feedback activation vasodilates the efferent arteriole by an

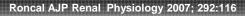

adenosine-dependent mechanism

The Inflammatory cascade

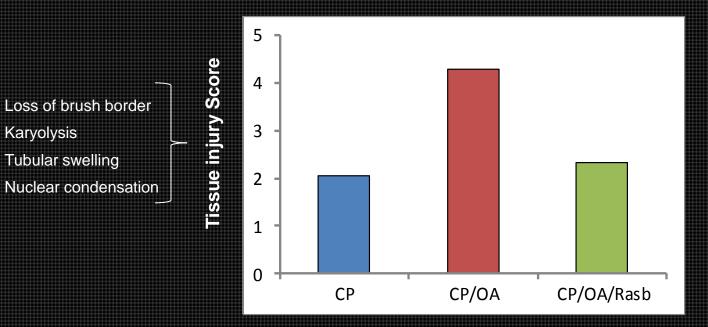
Mechanism of acute kidney injury

Interval Summary

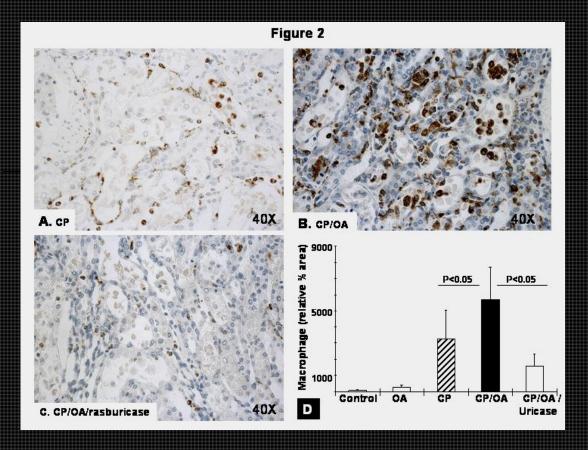

- Serum uric acid associated with many disease conditions via crystal-independent mechanisms
- SUA causes renal vasoconstriction
- SUA is proinflammatory and anti-angiogenic
- SUA causes thickening of preglomerular arteriolar thickening
- SUA appears to affect many of the hypothetical mechanisms of acute kidney injury


Am J Physiol Renal Physiol 292: F116-F122, 2007; doi:10.1152/ajprenal.00160.2006.

Effect of elevated serum uric acid on cisplatin-induced acute renal failure

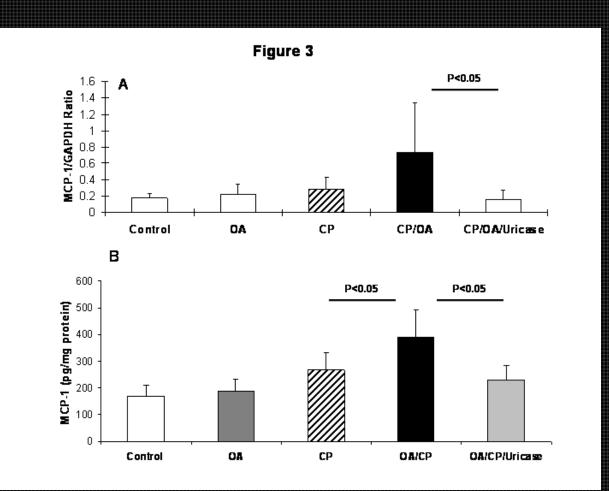

Carlos A. Roncal,^{1*} Wei Mu,^{1*} Byron Croker,² Sirirat Reungjui,¹ Xiaosen Ouyang,¹ Isabelle Tabah-Fisch,³ Richard J. Johnson,¹ and A. Ahsan Ejaz¹

Hypothesis: hyperuricemia might exacerbates AKI in CP-induced AKI

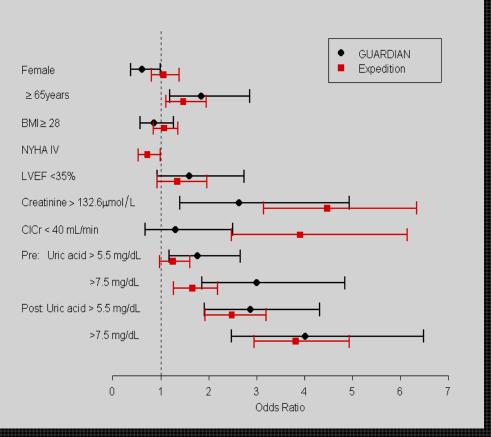

Tissue injury scores were highest in the hyperuricemia /cisplatin group

Lowering uric acid reduced tissue injury

Roncal/Ejaz AJP 2007; 292:F116


Hyperuricemic rats with CP injury displayed significantly more monocytes and macrophages in the cortex and inner stripe.

MCP-1 mRNA and protein was significantly increased hyperuricemic rats that received CP


Results of inflammatory cytokines

MCP-1 mRNA and protein was significantly increased hyperuricemic rats that received CP

Could Uric Acid Have a Role in Acute Renal Failure?

A. Ahsan Ejaz,* Wei Mu,* Duk-Hee Kang,[†] Carlos Roncal,* Yuri Y. Sautin,* George Henderson,* Isabelle Tabah-Fisch,[‡] Birgit Keller,[§] Thomas M. Beaver,[∥] Takahiko Nakagawa,* and Richard J. Johnson*

865 and 2832 patients who were in the placebo arm qualified for the study Preoperative uric acid increases the risk for AKI in cardiac surgery

GUARDIAN/EXPEDITION Trials

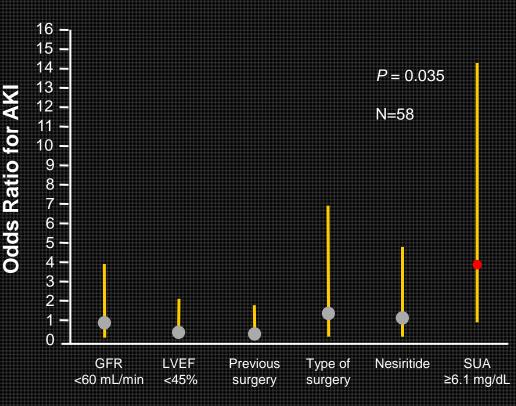
SUA > 5.5mg/dL: 2 - 3 x risk for AKI SUA > 7.5mg/dL: 3 - 4 x risk for AKI

GUARDIAN / EXPLORER NHE inhibitors (cariporide) to prevent reperfusion injury during cardiac surgery

Original Report: Patient-Oriented, Translational Research

Nephrology

Am J Nephrol 2009;30:425–429 DOI: 10.1159/000238824 Received: June 4, 2009 Accepted: August 4, 2009 Published online: September 11, 2009


Uric Acid: A Novel Risk Factor for Acute Kidney Injury in High-Risk Cardiac Surgery Patients?

A. Ahsan Ejaz^a Thomas M. Beaver^b Michiko Shimada^{a, c} Puneet Sood^a Vijaykumar Lingegowda^a Jesse D. Schold^a Tad Kim^b Richard J. Johnson^{a, c}

SUA is a novel, independent predictor of postoperative AKI in CV surgery

Preoperative serum uric acid >6.1mg/dL confers a 4-fold increased risk for AKI

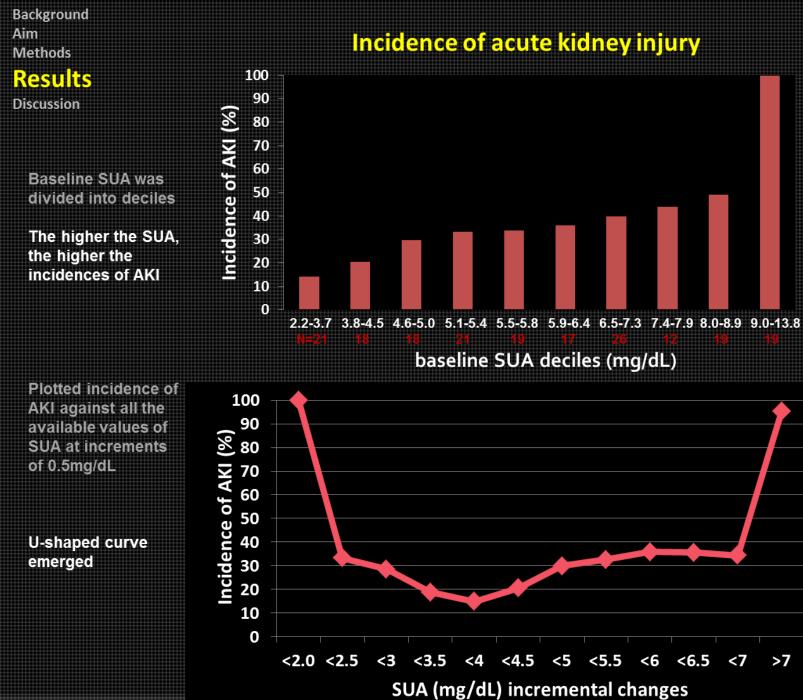
Hyperuricemia is associated with increased risk for AKI, longer hospital stay, and more severe decrease in postoperative GFR

SUA >6.1 mg/dL increases the risk of AKI by 4-fold

Ejaz Am J Nephrology 2009; 30:425

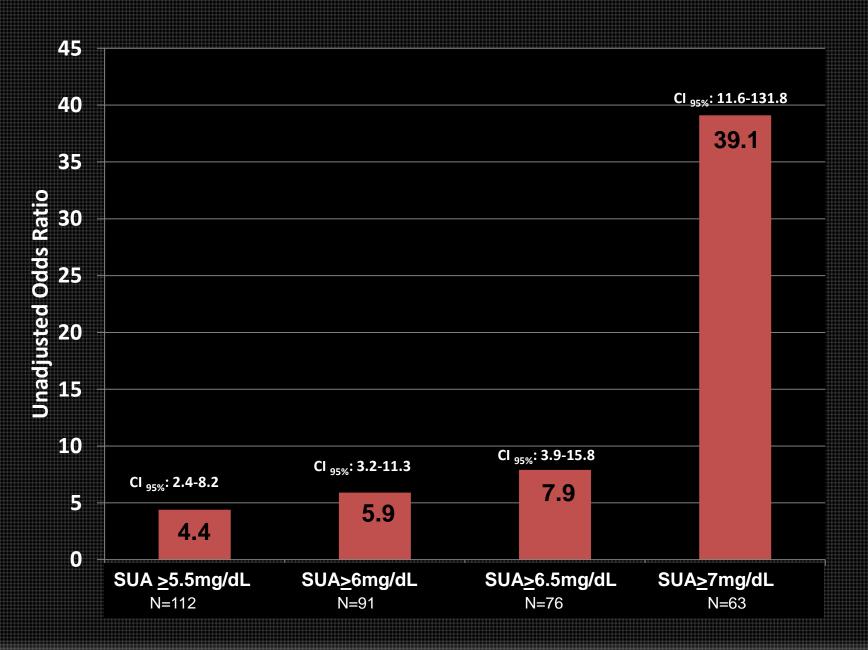
The American Journal of Medicine

Volume 125, Issue 3, March 2012, Pages 302.e9–302.e17


AJM online

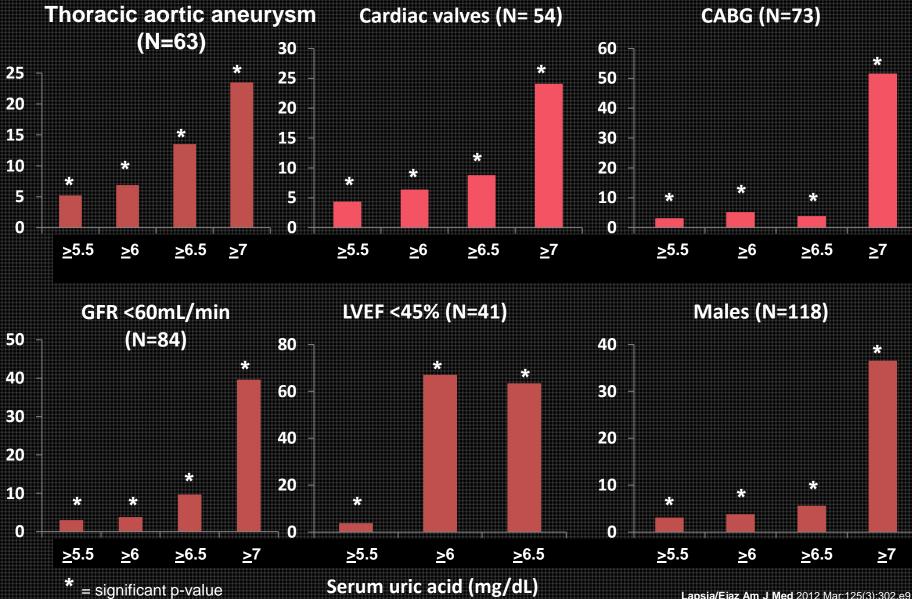
Elevated Uric Acid Increases the Risk for Acute Kidney Injury

Vijay Lapsia, MD^a, Richard J. Johnson, MD^{b, c}, Bhagwan Dass, MD^c, Michiko Shimada, MD, PhD^d, Ganesh Kambhampati, MD^c, Noel I. Ejaz^c, Amir A. Arif^c, A. Ahsan Ejaz, MD^c ^A


Investigated the potential influence of preoperative serum uric acid (SUA) on acute kidney injury in patients undergoing cardiovascular

Lapsia/Ejaz Am J Med 2012 Mar;125(3):302.e9

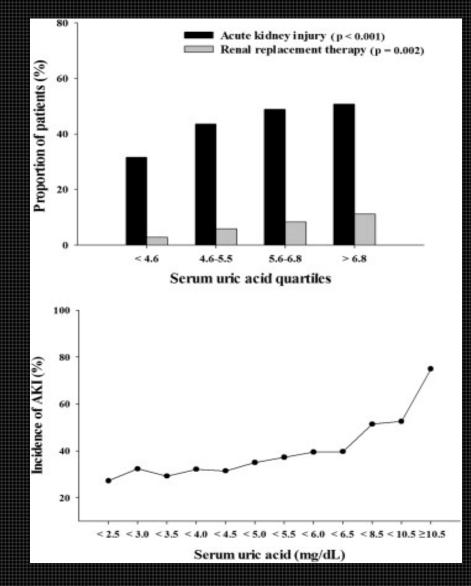
Univariate analysis: Risk for AKI by threshold SUA levels



Lapsia/Ejaz Am J Med 2012 Mar;125(3):302.e9

Multivariate analysis: Substitution of SUA>7mg/dL with other SUA values

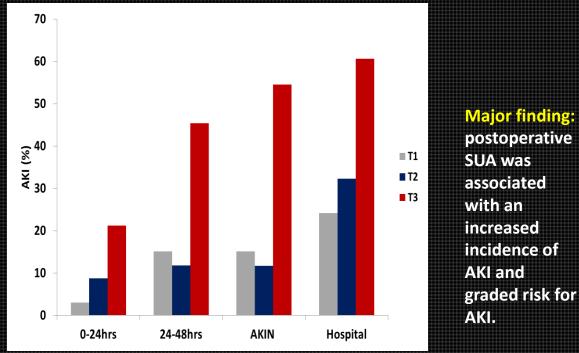
SUA <u>></u> 5.5mg/dL:	OR for AKI:	3.83	Cl _{95%} 1.93-7.63	p<0.001
SUA <u>></u> 6mg/dL:	OR for AKI	5.15	Cl _{95%} 2.56-10.35	p<0.001
SUA <u>></u> 6.5mg/dL:	OR for AKI	6.79	Cl _{95%} 3.23-14.23	p<0.001
For reference <mark>SUA ≥7mg/dL</mark> :	OR for AKI	39.68	Cl _{95%} 11.1-141.9	p<0.001


Multivariate analysis in subgroups at high risk for AKI

Lapsia/Ejaz Am J Med 2012 Mar;125(3):302.e9

Association of Preoperative Uric Acid and Acute Kidney Injury Following CV

Surgery.



Preoperative elevated uric acid (≥6.5 mg/dL) was associated independently with AKI after CV surgery OR 1.46; 95%CI 1.04–2.06, p = 0.030).

N=1019

Investigation of the relationship between post-op serum uric acid and AKI and comparison with conventional and novel biomarkers of AKI.

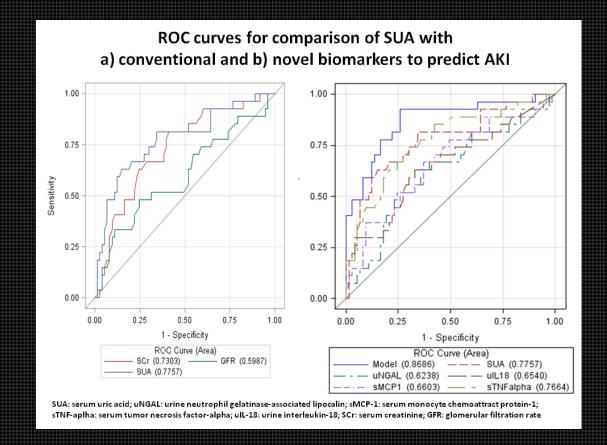
Full cohort SUA: 5.3 ± 0.1 mg/dL. Mean SUA with AKI : 6.4 ± 0.3 mg/dL no AKI: 4.9 ± 0.1 mg/dL, p<0.001 OR for AKI: 0.49, Cl_{95%} 0.35-0.71, p<0.001) SUA has a graded relationship with AKI, therefore we divided SUA into tertiles 1st tertile SUA \leq 4.53mg/dL 2nd tertile SUA> 4.53mg/dL and \leq 5.77mg/dL 3rd tertile SUA> 5.77mg/dL.

T1= 1st SUA tertile, T2= 2nd SUA tertile, T3= 3rd SUA tertile, AKIN: 0-48hours

The 1st, 2nd, and 3rd SUA tertiles were associated with 15.1%, 11.7%, and 54.5% incidence of AKI, respectively.

Ejaz, J Nephrology 2012; 25:497

The 3rd SUA tertile: OR 8.38, Cl95% 2.13-33.05, p=0.002) risk for AKI.


Compared to referent 1st tertile

• 3rd tertile vs. referrent 1st SUA tertile:

AKI on day 2: AKI during hospital stay: adjusted OR 7.94, $CI_{95\%}$ 1.50-42.08, p=0.015 adjusted OR 4.83, $CI_{95\%}$ 1.21-19.20, p=0.025

Since the prooxidant effect of SUA manifests at levels <a>>>>.5mg/dL, we also calculated that the incidence of AKI for

SUA<5.5mg/dL 13.1% vs. SUA>5.5mg/dL 48.7%, p<0.001. •Important finding: was that SUA had comparable predictive values as the *conventional* preoperative biomarker SCr and novel biomarkers at 24 hours from start of surgery, and was superior to preoperative GFR.

•The observations that pre- and postoperative SUA are associated with AKI offers the potential to predict AKI at any perioperative time-point.

RESEARCH ARTICLE

Uric Acid and the Prediction Models of Tumor Lysis Syndrome in AML

A. Ahsan Ejaz $^{1*},$ Negiin Pourafshar $^{1},$ Rajesh Mohandas $^{1,2},$ Bryan A. Smallwood $^{3},$ Richard J. Johnson $^{4},$ Jack W. Hsu 5

- Prediction of TLS and institution of prophylactic and therapeutic options are paramount to the favorable clinical outcomes for patients undergoing cancer treatment.
- The current prediction models of laboratory TLS (LTLS) in acute myeloid leukemia (AML) are based on white blood cell count (WBC), with or without lactate dehydrogenase (LDH), and specific cytogenetic abnormalities and karyotype complexity.
- None of the prediction models include SUA.
- We have demonstrated that SUA is an independent predictor of acute kidney injury (AKI).
- Given our findings, we wanted to investigate the discrimination ability of baseline SUA to predict TLS and also to compare it to common laboratory variables, cytogenetic profiles, tumor markers and prediction models in acute myeloid leukemia patients.

Retrospective study of 183 AML patients between 2000-2012

Cairo-Bishop definition of LTLS

- Uric acid ≥8 mg/dL or 25% increase from baseline
- Potassium ≥6 mEq/L or 25% increase from baseline
- Phosphorus ≥6.5 mg/dL (children) or ≥4.5 mg/dL (adults) or 25% increase from baseline
 - Calcium ≤7 mg/dL or 25% decrease from baseline

Cairo prediction model

Low: WBC <25x10⁹/L and LDH <2x ULN Intermediate: WBC \geq 25x10⁹/L and LDH \geq 2x ULN High: WBC \geq 100x10⁹/L

NHS prediction model

Low: WBC <10x109/L Intermediate: WBC 10-50x109/L High: WBC >50x109/L Does not include LDH

SUA prediction model

Low: SUA <5.5mg/dL Intermediate: SUA >5.5mg/dL and <7mg/dL High: SUA > 7mg/dL

CALGB prediction model

Favorable Intermediate Adverse groups based on remission outcomes for specific cytogenetic abnormalities and karyotype complexity.

> British J Haematol 2010; 149:578 http://www.royalsurrey.nhs.uk/Defa ult.aspx?DN=45ce893f-8494-413f-9dc6-b3c7a6e21a51

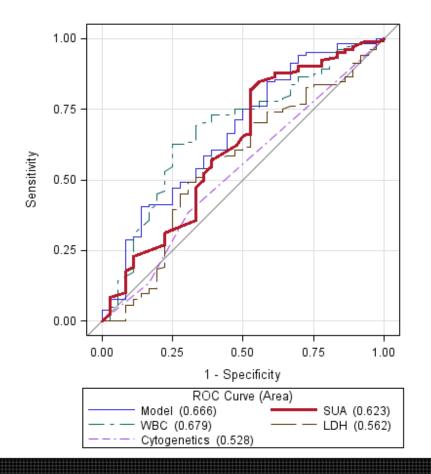
CALGB prediction model

Cytogenetic risk group	Induction success	Cumulative incidence of relapse	Overall survival
Favorable	t(8;21)	t(8;21)	t(8;21)
	inv(16) or t(16;16)	inv(16) or t(16;16)	inv(16) or t(16;16) del(9q)
Intermediate	Normal karyotype	Normal karyotype	Normal karyotype
	-Y	-Y	-γ
	del(5q)	t(9;11)	del(5q)
	t(6;9)	del(9q)	Loss of 7q
	t(6;11)	+8 sole	t(9;11)
	-7	+8 with 1 other	+11
	Loss of 7q	abnormality	del(11q)
	+8 sole	+11	abn(12p)
	+8 with 1 other	+13	+13
	abnormality		del(20q)
	del(9q)		+21
	t(9;11)		
	+11		
	del(11q)		
	t(11;19)(q23;p13.1)		
	+13		
	del(20q)		
	+21		
Adverse	Complex karyotype	Complex karyotype	Complex karyotype
	(≥ 3 abnormalities)	(≥3 abnormalities)	(≥ 3 abnormalities)
	inv(3) or t(3;3)	-7	inv(3) or t(3;3)
	abn(12p)	+21	t(6;9)
			t(6;11)
			-7
			+8 sole
			+8 with 1 other
			abnormality
			t(11;19)(q23;p13.1)

Univariate analysis of risk factor for LTLS in AML

Variables	LTLS		
	OR	Cl _{95%}	p-value
Pretreatment laboratory			
WBC (full cohort), N=183	1.00	0.9-1.0	0.390
WBC <10x10 ⁹ /L, N=95	0.94	0.7-1.2	0.603
WBC 10-50x10 ⁹ /L, N=43	0.98	0.9-1.0	0.477
WBC >50x10 ⁹ /L, N=15	1.00	0.9-1.0	0.449
WBC >100x10 ⁹ /L, N=6	0.99	0.9-1.0	0.943
SUA (full cohort), N=183	1.12	1.0-1.2	0.042
SUA low risk, N=113	0.33	0.2-0.6	<0.001
SUA intermediate risk, N=38	1.22	0.5-3.1	0.663
SUA high risk, N=32	7.26	3.2-16.6	<0.001
LDH, N=145	1.00	1.0-1.0	0.930
LDH, 2xULN, N=65	1.00	1.0-1.0	0.486
Tumor markers			
CD34, N=99	0.32	0.1-0.6	<0.001
Cytogenetics			
CALGB (full cohort)=169	1.83	1.1-3.2	0.031
CALGB adverse, N=48	0.56	0.2-1.3	0.169
CALGB intermediate, N=96	0.89	0.4-1.8	0.755
CALGB favorable, N=25	2.62	1.1-6.3	0.032
Gene mutations			
NPM1, N=33	1.00	0.1-5.1	1.000
FLT3, N=35	0.87	0.2-3.4	0.322

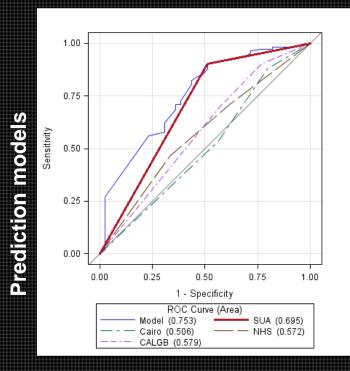
Adjusted model

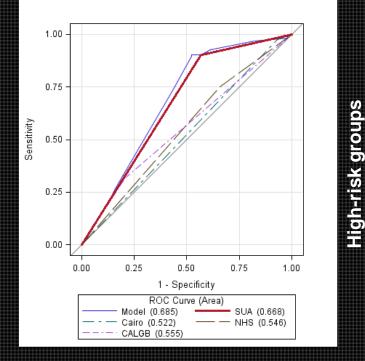

CALGB favorable: OR 2.7, CI95% 1.1-6.5, p=031

baseline SUA OR 1.12, CI95% 1.0-1.3, p=0.048)

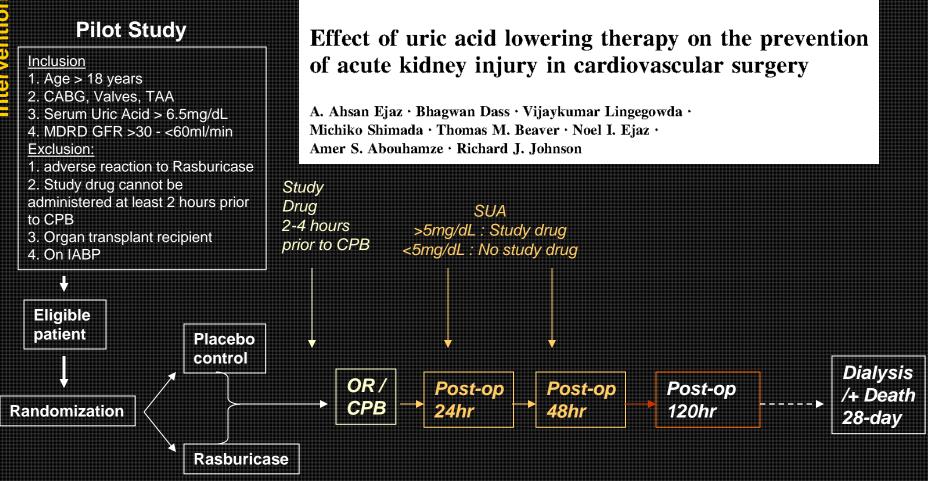
SUA high-risk OR 6.6, CI95% 2.4-17.9, p<0.001

LTLSmodified baseline SUA OR 2.8, CI95% 1.1-7.1, p=0.033.


Comparison of clinical parameters to predict LTLS

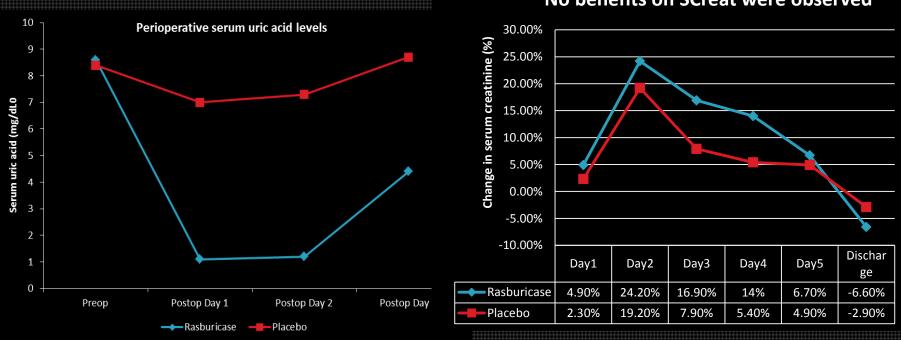

The discriminatory ability of SUA was superior to LDH, cytogenetic profile and tumor markers *but not to WBC (AUCwbc 0.679).*

However in comparisons between high-risk SUA and high-risk WBC, SUA had superior distinguishing capability (AUC_{SUA} 0.664 vs. AUC_{WBC} 0.520; p <0.001) to predict LTLS.


<u>Major finding: SUA had comparable predictive value as</u> <u>conventional prediction models and the combined model.</u>

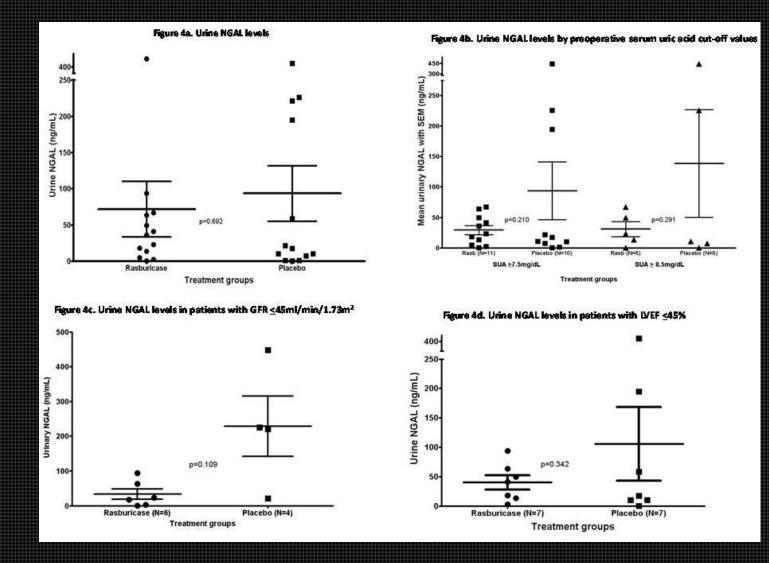
SUA demonstrated better performance than the prediction models (AUC_{high-risk SUA} 0.695, p<0.001)

In direct comparison of high-risk groups of each prediction model, SUA again demonstrated superior performance than the prediction models (AUC _{high-risk SUA} 0.668, p=0.001) in predicting LTLS, approaching that of the combined model (AUC 0.685, p<0.001


Int Urol Nephrol (2013) 45:449-458

NEPHROLOGY - ORIGINAL PAPER

DOI 10.1007/s11255-012-0192-2



Effect of rasburicase on Screat

No benefits on SCreat were observed

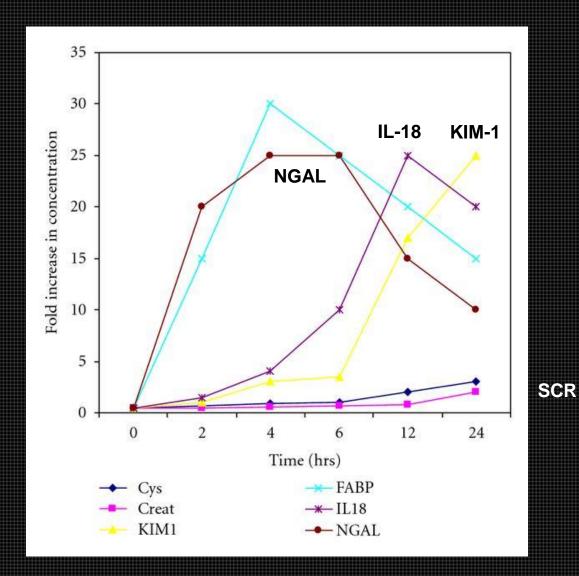
Lowering hyperuricemia resulted in less renal structural injury as measured by the AKI biomarker NGAL

Nephrology

Am J Nephrol 2015;42:402–409 DOI: 10.1159/000443283 Received: October 26, 2015 Accepted: December 9, 2015 Published online: January 6, 2016

Effects of Serum Uric Acid on Estimated GFR in Cardiac Surgery Patients: A Pilot Study

A. Ahsan Ejaz^a Kawther F. Alquadan^a Bhagwan Dass^a Michiko Shimada^b Mehmet Kanbay^c Richard J. Johnson^d


The effect of SUA on GFR) in the non-steady state is uncertain, calculations of which have been hindered by the technical complexities and the lack of broad consensus on guidelines about estimating GFR.

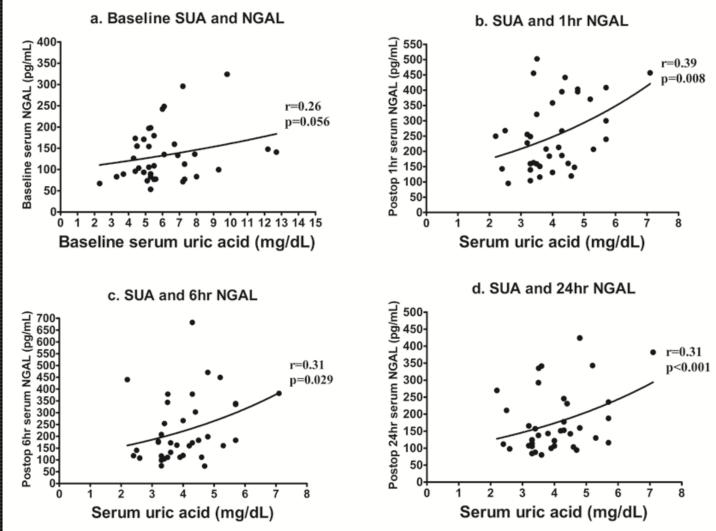
Chen has recently retooled the fundamental creatinine clearance equation with the power and versatility to estimate renal function under non-steady conditions.

We therefore utilized this novel kinetic estimated GFR (KeGFR) method, along with traditional (serum creatinine, SCr) and nontraditional biomarkers (NGAL) to investigate the effects of SUA on renal function in patients undergoing cardiac surgery.

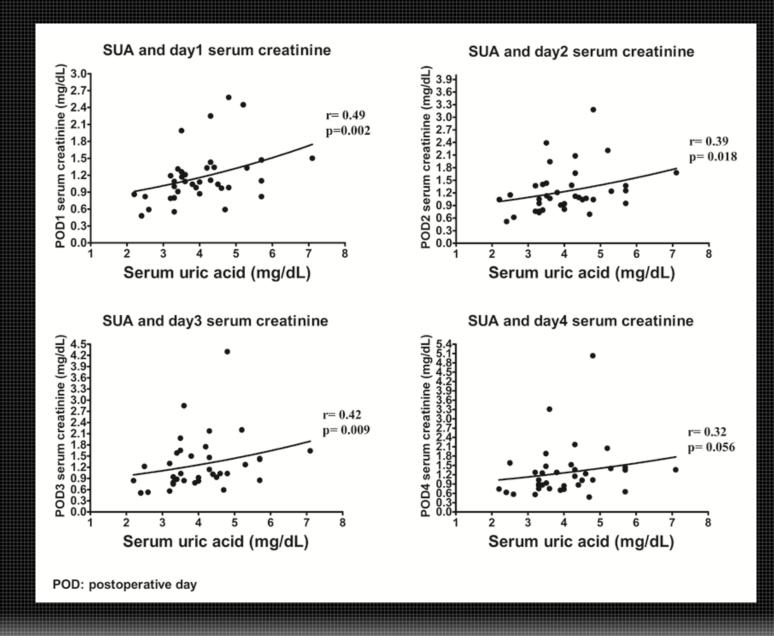
Tmax for NGAL, IL-18 and Screat following ischemia-reperfusion injury

Methods and Materials

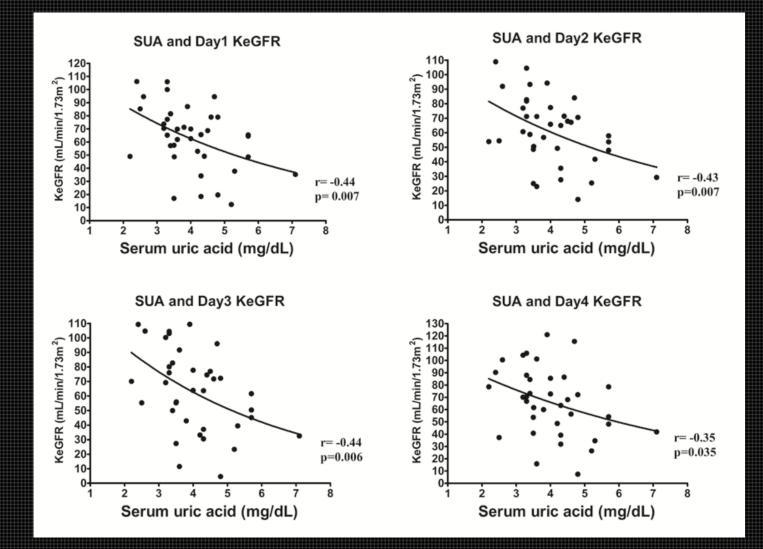
N=37

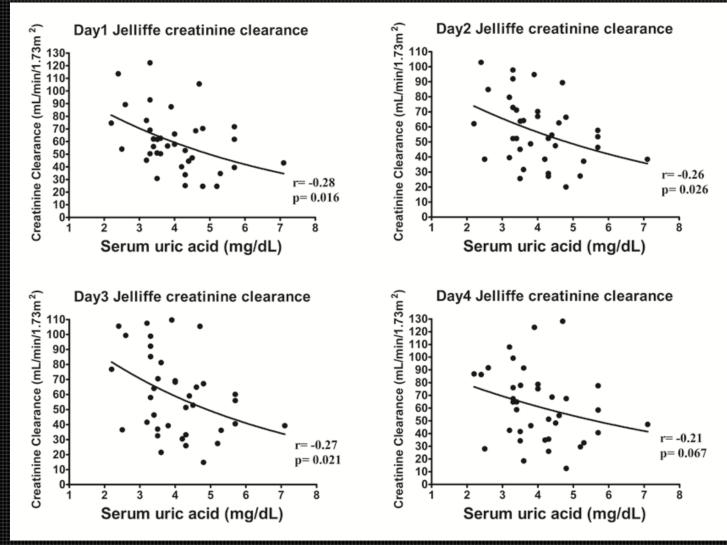

Adjusted for dilution effect of intraoperative fluid administration on SCr adjusted according to the following equation (Macedo)

SCr adjustments were performed for postoperative SCr values. Daily cumulative fluid balance was calculated according to the following formula: (sum of daily fluid received (L) - total amount of fluid eliminated (L)/preoperative weight (kg) × 100).


KeGFR: kinetic estimated GFR

Since there is no broad consensus method to correct for dilution effect on SUA, we used the absolute value of SUA measured at 1hr (SUA1h) post aortic crossclamp (ACC) release, the time of maximum dilution based on our previous studies.


Early biomarkers as a function of SUA concentration.


Conventional biomarkers as a function of SUA concentration.

Kinetic eGFR as a function of SUA concentration.

Confirmation with Jeliffe creatinine clearance

Major findings

The major findings of the study were the demonstration of significant correlations of SUA_{1h} with early biomarkers (NGAL) and traditional biomarkers (SCr) of kidney injury and inverse correlations with KeGFRs measured by two independent method developed especially for use in non-steady states.

Furthermore, the highest tertile of SUA_{1h} was associated with more severe renal injury as measured by NGAL in comparison to that associated with the lowest SUA_{1h} tertile.

The results provide further evidence that SUA_{1h} is a predictor of acute kidney injury in the early, intermediate and late phases of injury and also that higher SUA_{1h} concentrations are associated with lower KeGFRs.

These findings suggest that uric acid precedes and predicts acute changes in renal function and cannot be ascribed to a simple relationship in which a reduced GFR raises serum uric acid.

Provided experimental, epidemiological and interventional data of the role of uric acid in AKI

Uric acid contributes to acute kidney injury impairs renal blood flow autoregulation, causes severe cortical vasoconstriction and decreases renal flow and GFR, stimulates inflammatory response

Serum uric acid is an intriguing risk factor and target for treatment

Thank you

Charles Edelstein, Denver William Bennett, Cincinnati Brigitte Keller, Eschborn Isabelle Tabah-Fisch, Paris Vijay Lingegowda, Hyderabad Puneet Sood, Pittsburgh

Edward E. Ross, Orlando Abraham Hartzema Daniel Pauly, Kansas City Minakashi Devidas, Gainesville Michiko Shimada, Hirosaki Tomas D. Martin Charles T. Klodell Phillip J. Hess S. Abouhamze W. Stratford May

Matthew Pfeiffer Michael Stagliano Michelle Armstrong Susan Beltz, PharmD Deborah Kahler, PharmD

